
G.K.S.M. Govt. College,

Tanda Urmar

Department

Of

Computer Science
Presented By:-

Shaveta Sangar

(Assist. Professor)

Objectives of these slides:

 to introduce the main kinds of C

control flow

Control

Statements

Programming In C

Control Structures

 There may be situations where the

programmer requires to alter normal flow of

execution of program or to perform the same

operation a no. of times.

 Various control statements supported by c

are-

 Decision control statements

 Loop control statements

Decision Control Statements
 Decision control statements alter the normal

sequential execution of the statements of the

program depending upon the test condition to be

carried out at a particular point in program.

 Decision control statements supported by c are:-

 if statement

 if-else statement

 Else if Ladder

 Nested If

 switch statement

Decision Control Statements

 if statement

 Most simple and powerful decision control statement.

 It executes a statement or block of statements only if the
condition is true.

 Syntax: if (condition) if (condition)

{ OR {

statement (s); statement 1;

} statement 2;

Next statement; }

statement 3;

 In above syntax : if condition is true only then the
statements within the block are executed otherwise next
statement in sequence is executed.

 Flowchart

Condition

STOP

False

True

Block of

if

Next statement

/* Program to check whether a no. is even */

include<stdio.h>

include<conio.h>

void main()

{

int num;

clrscr();

printf(“enter the number”);

scanf(“%d”,&num)

if(num%2==0)

{

printf(“\n Number is even”);

}

printf(“ End of program”);

getch();

}

if – else statement
 In case of if statement, the block of statements is executed only when the

condition is true otherwise the control is transferred to the next statement
following if block.

 But if specific statements are to be executed in both cases (either
condition is true or false) then if – else statement is used.

 In if – else statement a block of statements are executed if the condition
is true but a different block of statements is executed when the condition
is false.

 Syntax: if (condition)

{

statement 1;

statement 2;

}

else

{

statement 3;

}

Test

Condition

Block of if Block of else

Next statement

STOP

False

True

Exercise: WAP to check whether a given no. is even or

odd?

Nested if – else statement

 When an entire if-else is enclosed within the body of if

statement or/and in the body of else statement, it is known

as nested if-else statement.

 The ways of representing nested if –else are-

if (condition1)

{

if (condition2)

statement 1;

else

statement 2;

}

else

statement 3;

if (condition1)

{

if (condition2)

statement 1;

else

statement 2;

}

else

{

if (condition 3)

statement 3;

else

statement 4;

}

if (condition1)

statement 1;

else

{

if (condition2)

statement 2;

else

statement 3;

}

If- else- if ladder
 In a program involving multiple conditions, the nested if else

statements makes the program very difficult to write and

understand if nested more deeply.

 For this ,we use if-else-if ladder.

 Syntax: if (condition1)

statement1;

else if(condition2)

statement2;

else if(condition3)

statement 3;

else

default statement;

condition 1

condition 2

condition 3Statement 1

Statement 2

Statement 3

Default statement

Next statement

false

true

false

true

false

true

Switch statement

 Switch is a multi-way decision making statement which selects
one of the several alternatives based on the value of single
variable or expression.

 It is mainly used to replace multiple if-else-if statement.

 The if-else-if statement causes performance degradation as
several conditions need to be evaluated before a particular
condition is satisfied.

 Syntax: switch (expression)

{

case constant1 : statement (s); [break;]

case constant2 : statement (s); [break;]

…………………………………….

default: statement (s)

}

Break statement

 Break statement terminates the execution of

the loop in which it is defined.

 The control is transferred immediately to the

next executable statement after the loop.

 It is mostly used to exit early from the loop

by skipping the remaining statements of

loop or switch control structures.

 Syntax: break;

Looping Structures

 When we want to repeat a group of statements a no.

of times, loops are used.

 These loops are executed until the condition is true.

 When condition becomes false, control terminates

the loop and moves on to next instruction

immediately after the loop.

 Various looping structures are-

 while

 do – while

 for

LOOPING STATEMENTS

 Loop is divided into two parts:

 Body of the loop

 Control of loop

 Mainly control of loop is divided into two

parts:

 Entry Control loop (while, for)

 Exit Control loop (do-while)

while statement

 While loop is used to execute set of statements as long as

condition evaluates to true.

 It is mostly used in those cases where the programmer

doesn’t know in advance how many times the loop will be

executed.

 Syntax: while (condition)

{

Statement 1 ;

Statement 2 ;

}

condition statement

Statement after while loop

true

do- while
 do-while is similar to while except that its test

condition is evaluated at the end of the loop instead at

the beginning as in case of while loop.

 So, in do-while the body of the loop always executes

at least once even if the test condition evaluates to

false during the first iteration.

 Syntax: do

{

statement 1;

statement 2;

}while (condition);

statement;

Body of loop

Test condition

Next statement

true

false

for loop
 Most versatile and popular of three loop structures.

 Is used in those situations when a programmer

knows in advance the number of times a statement

or block will be executed.

 It contains loop control elements all at one place

while in other loops they are scattered over the

program and are difficult to understand.

 Syntax:-

for (initialization; condition; increment/decrement)

{

Statement(s);

}

The for is a sort of while

for (expr1; expr2; expr3)

statement;

is equivalent to:

expr1;

while (expr2) {

statement;

expr3;

}

Various other ways of writing same for loops

i = 1

for (; i<=15;i ++)

{

……..

}

for (i=1; ;i++)

{

………

if (i>15)

break;

……

}

for (i=1;i<=15;)

{

………….

i++;

}

Some Examples
for(i = 7; i <=77; i += 7)

statement;

for(i = 20; i >= 2; i -= 2)

statement;

for(j = 10; j > 20; j++)

statement;

for(j = 10; j > 0; j--)

statement;

Incrementing

 Add 1 to c by writing:

c = c + 1;

Also: c += 1;

Also: c++;

Also: ++c;

Incrementing and Decrementing

/* Preincrementing and postincrementing */

#include <stdio.h>

int main()

{

int c;

c = 5;

printf("%d\n", c);

printf("%d\n",c++); /*post increment*/

printf("%d\n\n", c);

:

continued

c = 5;
printf("%d\n", c);
printf("%d\n",++c); /*pre-

increment*/
printf("%d\n", c);
return 0;

}

Output:

5

5

6

5

6

6

Decrementing

 Take 1 from c by writing:

c = c - 1;

Also: c -= 1;

Also: c--;

Also: --c;

Continue statement

 Like break ,continue statement also skips the remaining
statements of the body of the loop where it is defined but
instead of terminating the loop, the control is transferred to the
beginning of the loop for next iteration.

 The loop continues until the test condition of the loop become
false.

 Syntax: continue;

 E.g. for (m=1;m<=3;m++)

{

for (n=1;n<=2;n++)

{

if (m==n)

continue;

printf(“ m=%d n=%d”);

}

}

Output:

1 2

2 1

3 1

3 2

goto Statement
 An unconditional control statement that causes the control to

jump to a different location in the program without checking
any condition.

 It is normally used to alter the normal sequence of program
execution by transferring control to some other part of the
program.

 So it is also called jump statement.

 Syntax: goto label;

 Label represents an identifier which is used to label the
destination statement to which the control should be
transferred.

label : statement;

 The goto statement causes the control to be shifted either in
forward direction or in a backward direction .

exit() function

 C provides a run time library function exit() which
when encountered in a program causes the program to
terminating without executing any statement
following it.

 Syntax: exit(status);

Status is an integer variable or constant.

 If the status is 0,then program normally terminates
without any errors.

 A non-zero status indicates abnormal termination of
the program.

 The exit() function is defined in the process.h header
file.

Difference b/w exit() & break

 Exit() is used to transfer the control

completely out of the program whereas

break is used to transfer the control out

of the loop or switch statement.

